1. Network Coding
 - Idea: Allow intermediate nodes to combine incoming packets before forwarding them.
 - Our focus: wireless mesh networks with intersession network coding (COPE)

2. Problem Statement
 - Video Streaming
 - Network Coding
 - Mix packets from different flows
 - Maximize throughput

3. Video-Aware NC Schemes
 - NCV: Network Coding for Video
 - Candidate codes for \(p \triangleleft A \)
 - In general, code \(c_\alpha \) that brings maximum quality improvement:
 \[
 \frac{\sum_{h \in S} \frac{1}{w_h}}{\sum_{h \in S} \frac{1}{w_h}} = 1 - \frac{1}{\sum_{h \in S} \frac{1}{w_h}}
 \]

4. Performance Evaluation
 - Simulation Setup: Extended GloMoSim
 - Network Codes
 - Primary packet: \(A_1 \) is primary packet
 - NCVD: NCV + primary packet
 - NC-Radio: Rate-Diostization Optimized NC
 - Taxonomy of Algorithms under Comparison

Implementation
- Maintain state per hyperarc queue
- Store coded packets
- Store all packets in output queue \(Q \)
- If there exists network coding opportunity, packets are coded and stored in the queue.
- Hyperarc queue size is determined heuristically.
- Extended traffic splitting parameters

Implementation Summary
- Only traffic splitting part changes
- Our protocol directly applies to multi-hop network coding

Simulation Results:
- Throughput improvement compared to no-NC
- Optimal TCP-NCAQM TCP-CPE
- A & B Topology X Topology Grid Topology
- Our scheme (NCAQM) doubles TCP throughput